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ABSTRACT

A new low-rank spectral expansion technique for solving intractable equations obtained from waveguide equiv-

alence theorem decompositions is illustrated for a hybrid junction. The technique takes into account higher-
order modes and eliminates spurious resonances.

Analysis of Waveguide Junctions by Rank Reduction

The integral equations and corresponding matrix

equations that represent scattering at a waveguide
discontinuity are often ill–conditioned, Inversion
of such matrices is inaccurate for even large-order
truncations, but advantage may be taken of the often
relatively low effective rank of the matrix to ease

the inversion and eliminate spurious resonances that

arise from severe truncation.

The technique is illustrated for scattering in

the waveguide hybrid junction shown in Figure 1.
Previous solutions have required the sheet to be thin

enough to make the waveguide misalignment negligible,
and the frequency to be high enough for quasi–optical

1-3
analysis to be applicable , or else have required
direct inversion of large-order, ill-conditioned

4
matrices . Analysis of the hybrid is important
in band diplexer design, to achieve satisfactory
frequency band separation and to identify spurious

5--(
modes that may degrade system performance .

The hybrid with a single mode incident from port 1
is equivalent to the superposition of four symmetrical–

ly excited L-port structures in which planes S1 and S2

are replaced by electric or magnetic walls. Thus only
the l-port structure shown at the left in Figure 2

needs to be analyzed.
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Field equivalence theorems ,

applied as in the figure, reduce the complicated
geometry to two uniform waveguides excited by unknown

electric and magnetic current sheets, J, M. The
simplifications are valid because the media and

boundaries of regions devoid of fields can be freely
altered without affecting the fields in the other

regions.

The currents can be determined by requiring their
radiated fields to annihilate each other throughout

16,17
the null-field regions . Substitution of
expansions for the currents into the integral equations
that express the scattered fields in terms of the
unknown currents yields the exact matrix for the
unknown current coefficient vector c in terms

of the known incident modal amplitude vector s,

The elements of
scalar products

guides with the

Gc=s. (1)

G are formed from integrals involving
of normal modes Of the uniform wave–
chosen current expansion functions.

Partition (1) as

FA Bl~l ~1

(2)

Square matrix A is what G is truncated to if only the
first few current expansion terms are kept and only

the first few modes are required to satisfy the null-
field condition. The first few current expansion

coefficients are contained in x; the higher-order ones
are in y. The single incident modal amplitude is in
the subvector r of the otherwise null source vector s.

A crude solution to (2) is

x’ = A-lr . (3)

An exact solution is

x = (A-BD-lC)-lr

(4)

x z _ D–lcx .

SinCe D is ill-conditioned, D
-1

cannot be readily eval-
uated, especially when D is of high order. Solutions

more accurate than (3) can nevertheless b<? O~tained
-1

by substituting for D an approximation D–, the

group inverse of D18. A useful solution, more

accurate than (3) in that high-order terms are nOt
neglected, is

x = (A-BD-C)-lr

Y=-D-CX.

The group inverse D- = f(gf)-2g is obtained from

factorization D = fg that results from retaining
K dominant singular values in the singular-value
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decomposition of D . Matrices f and g are

(5)

the
the

NxK and KxN respectively, when D iS, fOr ]?raCtiCal

purposes, truncated to a large but finite size NxN,
with N usually much larger than K. The largest matrix

that needs to be inverked is gf, which is only KXK and
well-conditioned.
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Numerical results
22

are presented for the zero

thickness unity dielectric-constant hybrid, or empty
waveguide cross junction. Figure 3 shows the

scattering coefficient from port 1 to port 3 obtained
from the severely-truncated matrix (G=A is 4x4);

it also presents the effects of higher-order terms
obtained by rank reduction (D is 8x8 and approximately

rank 2), and compares these with the exact results
23

of Bouwkamp . There is agreement with the exact
results to within a fraction of a dB.

Near isolated frequencies, resonances with no

physical basis appear in the solution that uses the
severely-truncated matrix. A typical such resonance

is shown in Figure 4 on an expanded frequency scale.
At the spurious resonance frequency the G matrix

becomes nearly singular, one eigenvalue being at
least two orders of magnitude smaller than the other

three. By applying rank reduction, the spurious

resonance is removed, as shown in Figure 4 for a

rank-3 approximation.

Typically, scattered fields obtained from a

rank-reduced l+xh inversion of A or D agree with those
from a direct inversion of a 12x12 G-matrix to within

a few percent.

Typical electric and magnetic current sheets on
surface Sa appear in Figure 5. Only two terms are

needed in the expansions for the currents. Observe

that the shapes are characteristic of the dominant

mode field and consistent with the boundary

conditions at the walls.
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Fig. l-Top view of hybrid junction formed by two

crossed waveguides of width & whose junction
is traversed at a k5-degree angle by a

dielectric sheet of thickness t and rela-
tive dielectric constant ~.
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Fig. 2-Equivalence-theorem decomposition into
two waveguides, each having a null-field
region (0). The null-field media are

then altered to yield two simple wave-
guide structures.
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Fig. 3–1’ransmission coefficient from poz% 1 to
port 3 for the empty junction. The solid
line is for the severely-truncated matrix

method, the broken line shows the effect

of higher-order terms using rank-reduction,

and the dashed line is the exact result
23

given by Bouwksmp . ‘Eel cutoff is

flfc = 1.
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Fig. J-Elimination of spurious resonances in

transmission coefficient from port 1
to port 3 for the empty junction.
Solid line is from direct inversion of
G (4x4). Dashed line is from rank-3

aPProxi~te inversion. TE 01 cutoff

is f/fc = 1.

447



I .4

i .3

x
v

: 1.2

u
n
m
u
E

: 1.1

1.0

0.9

CURRENTS

/1
/’

//// \
I I I

o 0.5 1.0

xl/a

Fig. 5-Electrie (solid) and magnetic (dashed)

current sheet magnitudes vs. distance
along discontinuity surface S for the

a

l-port of Figure 2, with S1 and S2

electric and magnetic walls, respectively.
Frequency is 1.85 times TEOI cutoff

frequency.
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